Evaluation of an automated single-channel sleep staging algorithm
نویسندگان
چکیده
BACKGROUND We previously published the performance evaluation of an automated electroencephalography (EEG)-based single-channel sleep-wake detection algorithm called Z-ALG used by the Zmachine(®) sleep monitoring system. The objective of this paper is to evaluate the performance of a new algorithm called Z-PLUS, which further differentiates sleep as detected by Z-ALG into Light Sleep, Deep Sleep, and Rapid Eye Movement (REM) Sleep, against laboratory polysomnography (PSG) using a consensus of expert visual scorers. METHODS Single night, in-lab PSG recordings from 99 subjects (52F/47M, 18-60 years, median age 32.7 years), including both normal sleepers and those reporting a variety of sleep complaints consistent with chronic insomnia, sleep apnea, and restless leg syndrome, as well as those taking selective serotonin reuptake inhibitor/serotonin-norepinephrine reuptake inhibitor antidepressant medications, previously evaluated using Z-ALG were re-examined using Z-PLUS. EEG data collected from electrodes placed at the differential-mastoids (A1-A2) were processed by Z-ALG to determine wake and sleep, then those epochs detected as sleep were further processed by Z-PLUS to differentiate into Light Sleep, Deep Sleep, and REM. EEG data were visually scored by multiple certified polysomnographic technologists according to the Rechtschaffen and Kales criterion, and then combined using a majority-voting rule to create a PSG Consensus score file for each of the 99 subjects. Z-PLUS output was compared to the PSG Consensus score files for both epoch-by-epoch (eg, sensitivity, specificity, and kappa) and sleep stage-related statistics (eg, Latency to Deep Sleep, Latency to REM, Total Deep Sleep, and Total REM). RESULTS Sensitivities of Z-PLUS compared to the PSG Consensus were 0.84 for Light Sleep, 0.74 for Deep Sleep, and 0.72 for REM. Similarly, positive predictive values were 0.85 for Light Sleep, 0.78 for Deep Sleep, and 0.73 for REM. Overall, kappa agreement of 0.72 is indicative of substantial agreement. CONCLUSION This study demonstrates that Z-PLUS can automatically assess sleep stage using a single A1-A2 EEG channel when compared to the sleep stage scoring by a consensus of polysomnographic technologists. Our findings suggest that Z-PLUS may be used in conjunction with Z-ALG for single-channel EEG-based sleep staging.
منابع مشابه
Retrospective cross-validation of automated sleep staging using electroocular recording in patients with and without sleep disordered breathing
BACKGROUND Alterations of sleep duration and architecture have been associated with increased morbidity and mortality, and specifically linked to chronic cardiovascular disease and psychiatric disorders, such as type 2 diabetes or depression. Measurement of sleep quality to assist in the diagnosis or treatment of these diseases is not routinely performed due to the complexity and cost of conven...
متن کاملOnline Single EEG Channel Based Automatic Sleep Staging
Recent evidence supports the positive effects of external intervention during specific sleep stages (e.g. enhanced memory consolidation and depression relief). To enable timely intervention, online automated sleep staging is required and preferably with short latency. In this paper, we propose an approach to achieve this based on the analysis of spectral features of a single electroencephalogra...
متن کاملPerformance evaluation of an automated single-channel sleep–wake detection algorithm
BACKGROUND A need exists, from both a clinical and a research standpoint, for objective sleep measurement systems that are both easy to use and can accurately assess sleep and wake. This study evaluates the output of an automated sleep-wake detection algorithm (Z-ALG) used in the Zmachine (a portable, single-channel, electroencephalographic [EEG] acquisition and analysis system) against laborat...
متن کاملUsing off-the-shelf lossy compression for wireless home sleep staging.
BACKGROUND Recently, there has been increasing interest in the development of wireless home sleep staging systems that allow the patient to be monitored remotely while remaining in the comfort of their home. However, transmitting large amount of Polysomnography (PSG) data over the Internet is an important issue needed to be considered. In this work, we aim to reduce the amount of PSG data which...
متن کاملFASTER: an unsupervised fully automated sleep staging method for mice
Identifying the stages of sleep, or sleep staging, is an unavoidable step in sleep research and typically requires visual inspection of electroencephalography (EEG) and electromyography (EMG) data. Currently, scoring is slow, biased and prone to error by humans and thus is the most important bottleneck for large-scale sleep research in animals. We have developed an unsupervised, fully automated...
متن کامل